If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+21k=72
We move all terms to the left:
k^2+21k-(72)=0
a = 1; b = 21; c = -72;
Δ = b2-4ac
Δ = 212-4·1·(-72)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-27}{2*1}=\frac{-48}{2} =-24 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+27}{2*1}=\frac{6}{2} =3 $
| 0=5x^2-22x+25 | | y+8/6=y/5 | | u/5+9=22 | | 18-4n=2+60 | | 5x+17=-103 | | 2x-39=-9 | | 36^4x=6^4x-12 | | 10x+5+x+10=180 | | 5(x+4)=8+6x | | -1+3x=-11+4x | | 2x+34+4x+8=180 | | 17=2(v+6)-7v | | 2y-5(5y-2)=2-4(-5-y) | | |3x+6|=4x-1 | | 2x^2+16=178 | | 10-69=3p-5 | | ||2x+6|-14|=4 | | -2(t-4)-10=-3(t+2) | | 5x+17=6+2(3x+7) | | 2x^2-6=190 | | -20=2(u-4)-4u | | 4=3(m-5)-8 | | 4.6-7=4x-(-x+1)+5.3 | | 7/b-1=4 | | 10^w=1 | | -7(h+5)+4=-17 | | 5/6r-7/12=-3/4r-13/6 | | 10^w=1w= | | 4n+2+7=-6+5n+4n | | 7p+30=8p-10 | | 1/3y+1=10 | | 10x-2/8=3/8 |